Exercise 7.3
Special Cases of the CES Armington Aggregator
Problem
Consider the CES Armington aggregator
\[ A(a^m,a^x) = \left[ \chi \left(a^m\right)^{1-\frac1{\mu}} + (1-\chi) \left(a^x\right)^{1-\frac1{\mu}} \right]^{\frac{1}{1-\frac{1}{\mu}}}. \]
Show that
\[ \lim_{\mu\rightarrow1}A(a^m,a^x)= (a^m)^{\chi}(a^x)^{1-\chi}. \]
\[ \lim_{\mu\rightarrow0}A(a^m,a^x)= \min\{ a^m,a^x\}. \]
and
\[ \lim_{\mu\rightarrow\infty}A(a^m,a^x)= \chi a^m + (1-\chi)a^x. \]
Note that the share parameter \(\chi\) drops from the Armington aggregator as \(\mu\rightarrow 0\). This may be an undesirable property for certain applications. Provide an alternative specification of the CES aggregator such that
\[ \lim_{\mu\rightarrow0}A(a^m,a^x)= \min\{ \chi a^m,(1-\chi)a^x\}. \]
Answer
We first show that
Use
\[ \ln A(a^m,a^x) = \frac{\ln \left[ \chi \left(a^m\right)^{1-\frac1{\mu}} + (1-\chi) \left(a^x\right)^{1-\frac1{\mu}} \right]}{1-\frac{1}{\mu}} \]
For \(\mu=1\) this is not defined because the denominator is \(0\). Thus let’s apply the l’Hospital rule.
\[ \begin{eqnarray*} &\lim_{\mu\rightarrow 1} \frac{\ln \left[ \chi \left(a^m\right)^{1-\frac1{\mu}} + (1-\chi) \left(a^x\right)^{1-\frac1{\mu}} \right]}{1-\frac{1}{\mu}} \\ =&\lim_{\mu\rightarrow 1} \frac{\frac1{ \left[ \chi \left(a^m\right)^{1-\frac1{\mu}} + (1-\chi) \left(a^x\right)^{1-\frac1{\mu}} \right]} \left[\chi \ln a^m \frac1{\mu^2} \left(a^m\right)^{1-\frac1{\mu}} + (1-\chi) \ln a^x \frac1{\mu^2} \left(a^x\right)^{1-\frac1{\mu}}\right]}{\frac{1}{\mu^2}}\\ =&\chi \ln a^m + (1-\chi) \ln a^x \\ =&\ln\left[ \left(a^m\right)^{\chi}\left(a^x\right)^{(1-\chi)} \right] \end{eqnarray*} \]
Next, we show that
Note that
\[ \lim_{\mu\rightarrow 0} \frac{1}{1-\frac{1}{\mu}} = \lim_{\mu\rightarrow 0} \frac{\mu}{\mu -1} = \frac{0}{-1} =0 \]
and that
\[ \lim_{\mu\rightarrow 0} \left(1-\frac{1}{\mu}\right) = -\infty \]
Suppose that \(a^m/a^x>1\), so that \((a^m/a^x)^{-\infty} =0\) Take out \(a^x\)
\[ A(a^m,a^x) = a^x \left[ \chi \left(a^m/a^x \right)^{1-\frac1{\mu}} + (1-\chi) \right]^\frac1{{1-\frac{1}{\mu}}} \]
Now the part in the square brackets is well defined as \(\mu\rightarrow 0\) so that
\[ \lim_{\mu\rightarrow 0} \left[ \chi \left(a^m/a^x \right)^{1-\frac1{\mu}} + (1-\chi) \right]^\frac1{{1-\frac{1}{\mu}}} = \left[ (1-\chi) \right]^0 = 1 \]
and hence if \(a^m/a^x>1\), then
\[ \lim_{\mu \rightarrow 0} A(a^m,a^x) = a^x \]
By the same argument we have that if if \(a^m/a^x<1\), then
\[ \lim_{\mu \rightarrow 0} A(a^m,a^x) = a^m \]
It follows that
\[ \lim_{\mu \rightarrow 0} A(a^m,a^x) = \min\{a^m, a^x\}, \]
which is what we were asked to show.
Then, we show that
The claim follows from the facts that
\[ \lim_{\mu\rightarrow \infty} \frac{1}{1-\frac{1}{\mu}} = 1 \]
and
\[ \lim_{\mu\rightarrow \infty} \left(1-\frac{1}{\mu}\right) = 1. \]
Finally, we propose an alternative specification such that
Let
\[ A(a^m,a^x) = \left[ \left( \chi a^m \right)^{1-\frac1{\mu}} + \left( (1-\chi) a^x \right)^{1-\frac1{\mu}} \right] ^\frac1{{1-\frac{1}{\mu}}} \]
Suppose \(\chi a^m<(1-\chi) a^x\), then we have:
\[ A(a^m,a^x) = \chi a^m \left[ 1 + \left(\frac{ (1-\chi) a^x } {\chi a^m} \right)^{1-\frac1{\mu}} \right] ^\frac1{{1-\frac{1}{\mu}}} \]
For the rest proceed as above.