Exercise 3.1
Full Depreciation
Problem
Consider the model of section 3.1. The law of motion of capital given in equation (3.4) is a special case of the specification
\[ k_{t+1} = (1 - \delta)k_t + i_t, \]
where \(\delta\) denotes the depreciation rate. The case considered in section 3.1 obtains when \(\delta = 0\), which implies that capital does not depreciate. Show that in response to a permanent positive productivity shock of the type analyzed in section 3.3, the trade balance depreciates on impact. Consider first the polar case of full depreciation, which takes place when \(\delta = 1\), and then the general case \(\delta \in (0, 1)\).
Answer
An equilibrium are time paths for \(y_t\), \(k_{t+1}\), \(i_t\), \(c_t\), \(\lambda_t\), and \(d_t\) satisfying
\[ y_t = A_t F(k_t) \tag{1} \]
\[ k_{t+1} = (1 - \delta)k_t + i_t \tag{2} \]
\[ U'(c_t) = \lambda_t \tag{3} \]
\[ \lambda_t = \beta (1 + r)\lambda_{t+1} \tag{4} \]
\[ \lambda_t = \beta \lambda_{t+1} [A_{t+1} F'(k_{t+1}) + 1 - \delta] \tag{5} \]
\[ c_t + i_t + (1 + r)d_{t-1} = A_t F(k_t) + d_t \tag{6} \]
\[ \lim_{j \to \infty} \frac{d_{t+j}}{(1 + r)^j} = 0 \tag{7} \]
given \(d_{-1}\), \(k_0\), and the assumption that \(\beta (1 + r) = 1\). The case analyzed thus far is \(\delta = 0\). We now solve for a given \(\delta \in [0, 1]\). Combining the Euler equations for debt and capital yields for all \(t \geq 0\)
\[ r + \delta = A_{t+1} F'(k_{t+1}) \]
The equilibrium value of capital depends only on \(A_{t+1}\):
\[ k_{t+1} = \kappa \left( \frac{A_{t+1}}{r + \delta} \right), \quad \text{with } \kappa' > 0 \]
With \(k_{t+1}\) in hand we can find \(i_t\) and \(y_t\). To find \(c_t\), given \(\beta(1 + r) = 1\) we have
\[ c_t = c_0 \quad \text{for all } t \]
To find \(c_0\), use the intertemporal budget constraint which now is
\[ c_0 + rd_{-1} = \frac{r}{1 + r} \sum_{t=0}^{\infty} \frac{A_t F(k_t) + (1 - \delta)k_t - k_{t+1}}{(1 + r)^t} \tag{8} \]
With \(c_t\) in hand, we have the trade balance: \(tb_t = y_t - c_t - i_t\).
Prior to period 0, the economy was in a steady state with \(A_t = \bar{A}\) for all \(t < 0\). In that steady state:
\[ k_0 = \kappa \left( \frac{\bar{A}}{r + \delta} \right), \quad i_{-1} = \delta k_0, \quad y_{-1} = \bar{A}F(k_0), \quad c_{-1} = -rd_{-1} + y_{-1} - i_{-1}, \quad tb_{-1} = rd_{-1} \]
In period 0, \(A_t\) permanently increases from \(\bar{A}\) to \(A' > \bar{A}\). Find \(tb_0 - tb_{-1}\). The capital stock increases permanently, that is, for all \(t > 0\)
\[ k_t = \kappa \left( \frac{A'}{r + \delta} \right) > \kappa \left( \frac{\bar{A}}{r + \delta} \right) = k_0 \]
Investment increases:
\[ i_t = \delta k_1 > \delta k_0 \quad \forall t > 0 \]
\[ i_0 = k_1 - (1 - \delta)k_0 = (1 - \delta)(k_1 - k_0) + \delta k_1 > \delta k_1 = i_1 \]
With paths for \(k_t\) and \(i_t\) in hand, find consumption, \(c_t = c_0\) for all \(t \geq 0\). Use
\[ \begin{aligned} c_0 + rd_{-1} &= \frac{r}{1 + r} \sum_{t=0}^{\infty} \frac{A_t F(k_t) - i_t}{(1 + r)^t} \\ &= \frac{1}{1 + r} \left[ r(A'F(k_0) - i_0) + A'F(k_1) - \delta k_1 \right] \\ &= A'F(k_0) - \delta k_0 + \frac{1}{1 + r} \left[ A'F(k_1) - A'F(k_0) - (\delta + r)(k_1 - k_0) \right] \\ &= y_0 - \delta k_0 + \frac{A'}{1 + r} \left[ F(k_1) - F(k_0) - F'(k_1)(k_1 - k_0) \right] \end{aligned} \]
By concavity of \(F\),
\[ \frac{A'}{1 + r} \left[ F(k_1) - F(k_0) - F'(k_1)(k_1 - k_0) \right] > 0 \]
So
\[ \begin{aligned} tb_0 - tb_{-1} &= y_0 - c_0 - i_0 - rd_{-1} \\ &= - (k_1 - k_0) - \frac{A'}{1 + r} \left[ F(k_1) - F(k_0) - F'(k_1)(k_1 - k_0) \right] < 0 \end{aligned} \]