Exercise 2.9

Expected Output Changes and Permanent Income

⬅ Return

Problem

Equation (2.27) expresses the difference between current and permanent income, \(y_t - y^p_t\), as the present discounted value of expected future changes in the endowment. Present a step-by-step derivation of equation (2.27) starting from definitions (2.10) and (2.25). Comment on the cyclical properties of \(y_t - y^p_t\) depending on whether the level or the change of \(y_t\) follows an AR(1) process.

Answer

Multiply equation (2.10) by \((1 + r)/r\).

\[ \frac{1 + r}{r} y^p_t = \sum_{j=0}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^j} \]

Then split the sum,

\[ \frac{1 + r}{r} y^p_t = y_t + \sum_{j=1}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^j} \]

Subtract \(y^p_t\) from both sides

\[ \frac{1}{r} y^p_t = y_t - y^p_t + \sum_{j=1}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^j} \]

Rearrange

\[ y_t - y^p_t = - \sum_{j=1}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^j} + \frac{1}{r} y^p_t \]

Divide both sides of (2.10) by \(r\) and then use the resulting expression to eliminate \(\frac{1}{r} y^p_t\) from the above expression. This yields

\[ y_t - y^p_t = - \sum_{j=1}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^j} + \sum_{j=0}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^{j+1}} = - \sum_{j=1}^{\infty} \frac{1}{(1 + r)^j} \left[ \mathbb{E}_t y_{t+j} - \mathbb{E}_t y_{t+j-1} \right] \]

Finally, use (2.25) to replace \(\mathbb{E}_t y_{t+j} - \mathbb{E}_t y_{t+j-1}\) with \(\mathbb{E}_t \Delta y_{t+j}\) to obtain equation (2.27).

If \(y_t\) is AR(1), then as shown in section 2.2

\[ y^p_t = \frac{r}{1 + r - \rho} y_t \]

so that

\[ y_t - y^p_t = \frac{1 - \rho}{1 + r - \rho} y_t \]

Since \(\rho \in (-1, 1)\), \(\frac{1 - \rho}{1 + r - \rho} > 0\). It follows that \(y_t - y^p_t\) is perfectly procyclical, \(\text{corr}(y_t - y^p_t, y_t) = 1\). And \(y_t - y^p_t\) inherits the serial correlation of \(y_t\), \(\text{corr}(y_t - y^p_t, y_{t-1} - y^p_{t-1}) = \text{corr}(y_t, y_{t-1}) = \rho\).

If \(\Delta y_t\) is AR(1), then \(\mathbb{E}_t \Delta y_{t+j} = \rho^j \Delta y_t\) for \(j \geq 1\). By (2.27)

\[ y_t - y^p_t = - \frac{\rho}{1 + r - \rho} \Delta y_t \]

Assuming (as in section 2.4) \(\rho \in [0, 1)\), \(-\frac{\rho}{1 + r - \rho} < 0\). It follows that \(y_t - y^p_t\) is perfectly countercyclical, \(\text{corr}(y_t - y^p_t, \Delta y_t) = -1\). Now \(y_t - y^p_t\) inherits the serial correlation of \(\Delta y_t\), \(\text{corr}(y_t - y^p_t, y_{t-1} - y^p_{t-1}) = \text{corr}(\Delta y_t, \Delta y_{t-1}) = \rho\).