Exercise 2.9
Expected Output Changes and Permanent Income
Problem
Equation (2.27) expresses the difference between current and permanent income, \(y_t - y^p_t\), as the present discounted value of expected future changes in the endowment. Present a step-by-step derivation of equation (2.27) starting from definitions (2.10) and (2.25). Comment on the cyclical properties of \(y_t - y^p_t\) depending on whether the level or the change of \(y_t\) follows an AR(1) process.
Answer
Multiply equation (2.10) by \((1 + r)/r\).
\[ \frac{1 + r}{r} y^p_t = \sum_{j=0}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^j} \]
Then split the sum,
\[ \frac{1 + r}{r} y^p_t = y_t + \sum_{j=1}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^j} \]
Subtract \(y^p_t\) from both sides
\[ \frac{1}{r} y^p_t = y_t - y^p_t + \sum_{j=1}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^j} \]
Rearrange
\[ y_t - y^p_t = - \sum_{j=1}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^j} + \frac{1}{r} y^p_t \]
Divide both sides of (2.10) by \(r\) and then use the resulting expression to eliminate \(\frac{1}{r} y^p_t\) from the above expression. This yields
\[ y_t - y^p_t = - \sum_{j=1}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^j} + \sum_{j=0}^{\infty} \frac{\mathbb{E}_t y_{t+j}}{(1 + r)^{j+1}} = - \sum_{j=1}^{\infty} \frac{1}{(1 + r)^j} \left[ \mathbb{E}_t y_{t+j} - \mathbb{E}_t y_{t+j-1} \right] \]
Finally, use (2.25) to replace \(\mathbb{E}_t y_{t+j} - \mathbb{E}_t y_{t+j-1}\) with \(\mathbb{E}_t \Delta y_{t+j}\) to obtain equation (2.27).
If \(y_t\) is AR(1), then as shown in section 2.2
\[ y^p_t = \frac{r}{1 + r - \rho} y_t \]
so that
\[ y_t - y^p_t = \frac{1 - \rho}{1 + r - \rho} y_t \]
Since \(\rho \in (-1, 1)\), \(\frac{1 - \rho}{1 + r - \rho} > 0\). It follows that \(y_t - y^p_t\) is perfectly procyclical, \(\text{corr}(y_t - y^p_t, y_t) = 1\). And \(y_t - y^p_t\) inherits the serial correlation of \(y_t\), \(\text{corr}(y_t - y^p_t, y_{t-1} - y^p_{t-1}) = \text{corr}(y_t, y_{t-1}) = \rho\).
If \(\Delta y_t\) is AR(1), then \(\mathbb{E}_t \Delta y_{t+j} = \rho^j \Delta y_t\) for \(j \geq 1\). By (2.27)
\[ y_t - y^p_t = - \frac{\rho}{1 + r - \rho} \Delta y_t \]
Assuming (as in section 2.4) \(\rho \in [0, 1)\), \(-\frac{\rho}{1 + r - \rho} < 0\). It follows that \(y_t - y^p_t\) is perfectly countercyclical, \(\text{corr}(y_t - y^p_t, \Delta y_t) = -1\). Now \(y_t - y^p_t\) inherits the serial correlation of \(\Delta y_t\), \(\text{corr}(y_t - y^p_t, y_{t-1} - y^p_{t-1}) = \text{corr}(\Delta y_t, \Delta y_{t-1}) = \rho\).